Performance of membrane bioreactor (MBR) systems for the treatment of shipboard slops: Assessment of hydrocarbon biodegradation and biomass activity under salinity variation.
نویسندگان
چکیده
In order to prevent hydrocarbon discharge at sea from ships, the International Maritime Organization (IMO) enacted the MARPOL 73/78 convention in which any oil and oil residue discharged in wastewater streams must contain less than 5 ppm hydrocarbons. Effective treatment of this petroleum-contaminated water is essential prior to its release into the environment, in order to prevent pollution problem for marine ecosystems as well as for human health. Therefore, two bench scale membrane bioreactors (MBRs) were investigated for hydrocarbon biodegradation. The two plants were initially fed with synthetic wastewater characterised by an increasing salinity, in order to enhance biomass acclimation to salinity. Subsequently, they were fed with a mixture of synthetic wastewater and real shipboard slops (with an increasing slops percentage up to 50% by volume). The results indicated a satisfactory biomass acclimation level in both plants with regards to salinity, providing significant removal efficiencies. The real slops exerted an inhibitory effect on the biomass, partially due to hydrocarbons as well as to other concomitant influences from other compounds contained in the real slops difficult to evaluate a priori. Nevertheless, a slight adaptation of the biomass to the new conditions was observed, with increasing removal efficiencies, despite the significant slops percentage.
منابع مشابه
Hollow Fiber Membrane Bioreactor for COD Biodegradation of Tapioca Wastewater
The present work studied the application of membrane bioreactor (MBR) for tapioca wastewater processing that contained chemical oxygen demand (COD) ranging from 4000-9000 mg/L. A preliminary study was initially conducted in order to evaluate membrane performance with respect to its flux with MLSS concentration ranging from 4,500 to 10,500 mg/L. It was clear that fouling was observed during the ...
متن کاملMembrane Biological Reactors (MBR) and Their Applications for Water Reuse
The term 'membrane bioreactor' expresses a combination of activated sludge and membrane separation processes. The need to processes like sedimentation and disinfection used in common methods is eliminated through MBR systems in a way that membranes are placed into or out of an aeration tank and the vacuumed wastewater created by the suction pump is pulled up from inside the membranes and leaves...
متن کاملMembrane Biological Reactors (MBR) and Their Applications for Water Reuse
The term 'membrane bioreactor' expresses a combination of activated sludge and membrane separation processes. The need to processes like sedimentation and disinfection used in common methods is eliminated through MBR systems in a way that membranes are placed into or out of an aeration tank and the vacuumed wastewater created by the suction pump is pulled up from inside the membranes and leaves...
متن کاملMunicipal Wastewater Treatment Using a Hollow Fiber Membrane Bioreactor
A bioreactor equipped with hollow fiber microfiltration membranes was applied for wastewater treatment. Removal of chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) was investigated. The experimental setup consisted of influent and effluent tanks, and membrane modules using Polyvinyl Di–Fluoride (PVDF) hollow fibers. The operation program included suction and backwash...
متن کاملUpgrading of Biological Treatment for Landfill Leachate by Nano-Membrane Systems
Treatment of landfill leachate is challenging, due to its characteristics such as age, dumping place, composition and origin of wastes. For this reason, the application of hybrid processes is helpful for complete treatment of contaminants present in the leachates. The addition of membrane operations to biological treatment technology offers new advantages for this method. For this aim, a bench-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of hazardous materials
دوره 300 شماره
صفحات -
تاریخ انتشار 2015